

Subject: Eartworks Engineering Code: CVE518 Post Graduate Diploma Time allowed: 3 hours Total Marks: 100 Date: 3/1/2018

Attempt all questions. Any missing data may be reasonably assumed.	
Question (1):	<u>Marks</u> [20]
 a) Define the following : Seepage force under an earth dam Equipotential lines and flow lines The piping in soil as a result of seepage under earth dams 	(10)
b) A dam section is shown in fig. (1). Given : $K_x = 9.0*10^{-5} \text{ mm/s}$, $K_z = 1.0*10^{-5} \text{ mm/s}$ Draw a flow net and calculate the rate of seepage under the dam.	(10)
Question (2):	[20]
a) Find the equation of flow net in one directional flow using the following:	
 1 – Darcey's law of flow 2 – Laplace's equation of continuity 3 – Continuity equation of flow 	(10)
 b) For the same dam section in fig.(1), Determine the rate of seepage if a vertical sheet pile with 6.0 m length is placed at 6.0 m distance from point(a) 	(10)
Question (3):	[20]
a) عرف دمك التربة ومايترتب عليه من تحسين خواص التربة مع توضيح كيفية التحكم في درجه الدمك في الموقع وطرق نزح المياه من الحفر .	(10)
b) وضح مخاطر الانهبار وتغير الشكل المقبول نتيجه انهيار القص مع توضيح العوامل المؤثره علي ثبات ميول القطوع والعوامل المؤثره علي تصميم الجسور.	(10)
Question (4):	[20]
a) Discuss the factors controlling the choice of soils for earthworks?	(10)
b) Identify the common followed criteria in choice of earth dams construction materials?	(10)
Question (5):	[20]
a) A cantilever sheet pile penetrates a granular soil. G.W.T. is located at 2.0 m from ground surface. Dredge level is (-5.0) from ground level. Soil unit weights above and below G.W.T. are 15.9 & 19.33 kN/m ³ , respectively. $\varphi_{soil} = 32^{\circ}$. Estimate:	(10)
 The theoretical depth of embedment below dredge line (D)? Using a F.S of 30% in (D), what would be the total sheet pile length? 	
b) Decelve the previous problem if the sheet nile is embedded in stars with the institution	

b) Resolve the previous problem if the sheet pile is embedded in clayey soil having the following characteristics: Unit weights above and below G.W.T. are 15.2 & 18.50 (10) kN/m^3 . Cohesion = 50 kN/m^2 . All other factors are not altered.

Figure (1)

